افزایش مقاومت بتن با عمل آوری
افزایش مقاومت بتن با عمل آوری

عمل آوری یا کیورینگ بتن و نقش آن در مقاومت بتن  

برای دستیابی به بتنی با کیفیت خوب باید عملیات بتن ریزی مخلوط مناسب همراه با عمل آوری در یک محیط مناسب طی مراحل اولیه سخت شدن دنبال شود. به روش های مورد استفاده برای پیشروی هیدراسیون سیمان عمل آوری گفته می شود و از این رو، روش های عمل آوری برای راه های افزایش مقاومت بتن، دما و انتقال رطوبتی از داخل به خارج بتن را کنترل می کنند. مورد آخر نه تنها بر مقاومت بلکه بر دوام بتن نیز تاثیر می گذارد. در این فصل به روش های مختلف عمل آوری در دماهای عادی و بالا می پردازیم. عمل آوری در دمای بالا موجب افزایش نرخ واکنش های شیمیایی هیدراسیون و کسب مقاومت می وشود. به هر حال، باید به این نکته توجه شود که استفاده از دمای بالا در سنین اولیه می تواند تاثیر نامطلوبی بر مقاومت های بعدی بتن داشته باشد. در نتیجه، تاثیر دما باید به دقت مورد بررسی قرار گیرد.

عوامل موثر بر مقاومت بتن
آیین نامه کیورینگ بتن 

1- عمل آوری عادی

هدف از عمل آوری در دمای عادی، حفظ بتن در حالت اشباع یا تا حد ممکن نزدیک به حالت اشباع تا زمانی است که فضاهای پر از آب موجود در خمیر سیمان تازه تا حد مطلوب با فرآورده های هیدراسیون سیمان اشغال شوند. در مورد بتن کارگاهی، تقریباً همواره فرآیند کیورینگ بتن فعال پیش از آنکه فرآیند هیدراسیون به حداکثر مقدار ممکن خود برسد، متوقف می شود. تاثیر عمل آوری مرطوب برمقاومت را می توان از شکل 1 اندازه گیری کرد. مقاومت های کششی و فشاری به یک شکل، تحت تاثیر قرار می گیرند. عدم موفقیت در کسب مقاومت در نتیجه مقاومت ناکافی، یا به عبارتی اثر افت آب ناشی از تبخیر در مولفه های باریکتر و مخلوط های با عیار بیشتر مشهودتر می باشد، اما در بتن های ساخته شده با مصالح سنگی سبک کمتر دیده می شود. تاثیر شرایط عمل آوری بر مقاومت در بتن های دارای حباب هوا کمتر از بتن های بدون حباب هوا می باشد.
لزوم عمل آوری برخاسته از این حقیقت است که هیدراسیون سیمان تنها در منافذ مویینه پر از آب اتفاق می افتد. به این دلیل باید از افت آب از منافذ مویینه جلوگیری کرد. علاوه بر این، افت درونی آب به دلیل خود خشک شوندگی نیز با آب خارجی جبران می شود. به عبارت دیگر آب باید از یک منشاء خارجی به داخل بتن راه یابد. خشک شوندگی در بتن آب بندی شده زمانی اتفاق می افتد که نسبت آب به سیمان کمتر از حدود 5/0 باشد، زیرا رطوبت نسبی داخل در منافذ مویینه از حداقل مقدار لازم برای وقوع هیدراسیون یعنی 80 درصد کمتر می شود.
باید بر این نکته تاکید شود که الزاما نباید برای افزایش رضایت بخش مقاومت تمامی دانه های سیمان هیدراته شوند، و در عمل نیز این اتفاق به ندرت پیش می آید. به هر حال، در صورتی که عمل آوری تا زمانی که منافذ مویینه موجود در خمیر سیمان هیدراته شده قطعه بندی شود ادامه یابد، آنگاه بتن نفوذ ناپذیر شده (و همین طور دارای مقاومت کافی بوده) که این خصلت برای دوام بتن حیاتی است.
شکل 1 تاثیر عمل آوری مرطوب بر بتن ساخته شده

شکل 1 تاثیر عمل آوری مرطوب بر بتن ساخته شده با نسبت آب به سیمان 50/0.

برای رسیدن به این شرایط باید از تبخیر آب از سطح بتن جلوگیری شود. تبخیر در مراحل اولیه پس از بتن ریزی به دما و رطوبت نسبی هوای اطراف و سرعت باد که بر تغییر هوا برسطح بتن تاثیر می گذارد، بستگی دارد. همان گونه که بیان شد، باید از نرخ های تبخیر بیشتر از 5/0 کیلوگرم بر مترمربع در ساعت (1/0 پوند بر فوت مربع در ساعت) اجتناب شود.

2- روش های عمل آوری

در اینجا تنها کلیاتی در مورد ابزارهای مختلف عمل آوری به عنوان روشی که به طور بسیار گسترده بسته به شرایط کارگاه و اندازه، شکل و موقعیت بتن مورد نظر استفاده می شود، بحث خواهد شد.
روغن کاری یا مرطوب کردن قالب ها پیش از قالب گیری می تواند به عمل آوری اعضای بتنی با نسبت سطح به حجم کم کمک کند. می توان قالب ها را برای مدتی باز نکرده و در صورتی که جنس قالب مناسب باشد، آنها را طی سخت شدن بتن، مرطوب نگه داشت. در صورتی که قالب ها در سنین اولیه باز شده باشد، باید بتن را آب پاشی کرده و در یک ورقه پلی اتیلن یا سایر پوشش های مناسب پیچاند.
سطوح افقی بزرگ بتنی از قبیل دال های روسازی بزرگراه ها، مشکلات جدی تری را نشان می دهند. برای جلوگیری از ترک خوردگی سطحی و کم عمق در سطحی که در حال خشک شدن است باید از افت آب حتی پیش از گیرش، جلوگیری کرد. از آنجا که در این لحظه بتن از نظر مکانیکی ضعیف می باشد، الزامی است که پوشش بر روی سطح آن آویزان شود. این نوع محافظت، تنها در شرایط آب و هوایی خشک الزامی است، اما در جلوگیری کردن از ریزش باران برسطح بتن تازه نیز می تواند مفید باشد.
به محض اینکه بتن گیرش می یابد، می توان شرایط عمل آوری مرطوب بتن را با حفظ تماس آب با بتن فراهم کرد. این کار را می توان با آب پاشی یا غرقاب سازی (حوضچه سازی) و یا با پوشاندن بتن با ماسه، خاک، خاک اره یا پوشال مرطوب انجام داد. از پارچه های کتانی یا کرباسی که به طور متناوب مرطوب می شوند، نیز می توان استفاده کرد. همچنین می توان یک پوشش جاذب آب را بر روی بتن قرار دارد و جریان آب را بر روی آن باز کرد. طبیعتا تامین پیوسته آب موثرتر از تامین دوره ای آن است. شکل 2، افزایش مقاومت استوانه ای بتنی که سطح فوقاتی آن ها طی 24 ساعت اول غرقاب سازی شده است، را با استوانه های پوشانده شده با کرباس مرطوب مقایسه می کند. این اختلاف در نسبت های آب به سیمان پایین که خشک شوندگی هم به طور سریع اتفاق می افتد، بیشترین مقدار خود را دارد.

شکل 2 تاثیر شرایط عمل آوری برمقاومت استوانه های آزمایشی

شکل 2 تاثیر شرایط عمل آوری برمقاومت استوانه های آزمایشی

یک روش دیگر برای عمل آوری، آب بندی سطح بتن به وسیله یک غشای قابل نفوذ یا کاغذ ضدآب تقویت شده و یا ورقه های پلاستیکی است. یک غشا به شرط اینکه سوراخ نشده و آسیب ندیده باشد، به نحو موثری از تبخیر آب از سطح بتن جلوگیری می کند، اما از نفوذ آب از یک منشاء خارجی برای جبران مقدار افت آب ناشی از خشک شدگی نیز ممانعت می کند. این غشا از ترکیبات آب بندی مایع تشکیل می شود. ترکیبات آب بندی مایع را پس از اینکه اثر آب آزاد از سطح بتن ناپدید شد و پیش از اینکه آب موجود در منافذ بتن به اندازه ای خشک شود که امکان جذب این ترکیبات وجود داشته باشد، با استفاده از ابزار دستی مانند قلم مو و یا با پاشیدن بر روی سطح بتن پخش می کنند. ممکن است، این غشا شفاف و به رنگ سفید یا سیاه باشد. ترکیبات تیره رنگ دارای این خاصیت هستند که بر روی بتن سایه می اندازند و ترکیبات با رنگ روشن منجر به جذب گرمای کمتر از خورشید شده و در نتیجه دمای بتن کمتر افزایش پیدا می کند. مشاهدات مختلف در مورد مقاومت نمونه های مختلف بتن نشان داده اند که تاثیر غشاهای سفید و ورقه های نیمه شفاف سفید پلی اتیلن مشابه است. 
در ایالات متحده، مشخصات فنی ASTM C 309-06، ترکیبات عمل آوری غشایی و مشخصات فنی ASTM C 171-03، مواد ورقه ای، کاغذ تقویت شده و پلاستیک مخصوص عمل آوری را توصیف کرده اند. آزمایش های سودمندی و تاثیر مواد عمل آوری در روش استاندارد ASTM C 156-05 شرح داده شده اند. مشخصات فنی عملیات راهسازی و پل سازی،BS 8110-1: 1997، سودمندی عمل آوری 90 درصد را برای هر نوع غشای عمل آوری الزامی می داند. کارایی عمل آوری با مقایسه افت رطوبت از نمونه آب بندی شده با افت آب از نمونه آب بندی نشده که تحت شرایط توصیف شده ساخته و عمل آوری شده اند، ارزیابی می شود.
غشاهای آب بندی به استثنای زمانی که از بتن با نسبت آب به سیمان بالا استفاده می شود، درجه و نرخ هیدراسیون را در مقایسه عمل آوری مرطوب موثر کاهش می دهند. به هر حال، در اغلب موارد، عمل آوری مرطوب تنها به صورت دوره ای و غیر پیوسته انجام می شود، به طوری که در عمل ممکن است، آب بندی منجر به نتایج بهتری نسبت به سایر روش ها گردد. کاغذ های تقویت شده که یک مرتبه برداشته می شوند، مداخله ای در چسبندگی لایه بعدی بتن ایجاد نمی کنند، اما اثر غشاها در این مورد باید در هر حالت بررسی شود. ورقه های پلاستیکی به دلیل تجمع غیریکنواخت آب در زیر ورقه ها می توانند سبب تغییر رنگ یا لکه دار شدن سطح بتن شوند. برای جلوگیری از این وضعیت و همچنین جلوگیری از افت آب باید این ورقه ها به طور محکم بر روی سطح بتن کشیده شوند. بدیهی است که نمی توان به سادگی برای دوره عمل آوری نسخه پیچید، اما در صورتی که دما بیش از 10 درجه سلسیوس (50 درجه فارنهایت) باشد، ��یین نامه ACI 308.R-01، حداقل دوره های عمل آوری: 3 روزه را برای سیمان پرتلند ودگیر (نوع III)، 7 روزه را برای سیمان پرتلند معمولی (نوع I)، و 14 روزه را برای سیمان با حرارت زایی پایین (نوع IV) مشخص کرده است. به هر حال، دما نیز بر طول دوره زمانی عمل آوری تاثیر می گذارد. استاندارد BS 8110-1: 1997 حداقل دوره های عمل آوری برای سیمان ها و شرایط عمل آوری مختلف را مطابق با جدول 1 مشخص کرده است. احتیاط های ویژه در دماهای کمتر از 5 درجه سلسیوس (41 درجه فارنهایت) ضروری هستند. همچنین استاندارد ACI 308-01، اطلاعات وسیعی را در مورد عمل آوری ارائه می دهد. زمان باز کردن قالب ها در گزارش 67 انجمن اطلاعات و تحقیقات ساخت و سازهای صنعتی (CIRIA) ارائه شده است. این گزارش در سال 1997 در انگلستان منتشر شده است.  

جدول 1 حداقل دوره محافظت لازم (روز) برای سیمان ها و شرایط عمل آوری مختلف، مطابق با BS8110-1: 1997

شرایط عمل آوری

نوع سیمان

حداقل دوره عمل آوری و نگهداری (روز) برای

دمای متوسط سطحی بتن

بین 5 تا °C10

(41 تا °F50)

هر دمایی، °t، بین 5 تا

°C10 (41 تا °F50)

خوب: مرطوب و محافظت شده (رطوبت نسبی ˂ 80 درصد، محافظت شده از باد و خورشید)

همه نوع

بدون هیچ الزام خاص

متوسط: بین خوب و ضعیف

پرتلند رده 5/42 یا 5/52 و پرتلند ضدسولفات رده 5/42

4

(10+ t)/60

تمامی انواع به

استثنای سیمان های فوق

6

(10+ t)/80

ضعیف: خشک یا محافظت نشده (رطوبت نسبی ˃ 50 درصد، محافظت نشده از باد و خورشید)

پرتلند رده 5/42 یا 5/52 و پرتلند ضدسولفات رده 5/42

6

(10+ t)/80

تمامی انواه به

استثنای سیمان های فوق

10

(10+ t)/140


*
t = دما (°C) در فرمول برای محاسبه حداقل دوره نگهداری برحسب روز.
بتن با مقاومت بالا باید در سنین اولیه عمل آوری شود، در غیر این صورت ممکن است، هیدراسیون جزئی ارتباط بین منافذ را قطع کرده و آب نتواند در عمل آوری مجدد به قسمت های داخلی بتن راه یابد و در نتیجه هیدراسیون بیشترب اتفاق نخواهد افتاد. به هر حال، همواره در مخلوط های با نسبت آب به سیمان بالا، حجم زیادی از منافذ پوسته باقی خواهند ماند، به طوری که بتوان عمل آوری را بعدا به طور موثری از سر گرفت. با این وجود، توصیه می شود که عمل آوری در اولین فرصت ممکن شروع می شود، زیرا در عمل ممکن است، خشک شدن اولیه منجر به جمع شدگی و ترک خوردگی شود.

3- تاثیر دما

به طور کلی، هر چه دمای بتن در زمان بتن ریزی بالاتر باشد، نرخ اولیه کسب مقاومت بیشتر بوده، اما مقاومت بلند مدت کمتر خواهد بود. به همین دلیل کاهش دمای بتن تازه در زمان بتن ریزی در اقلیم های گرمسیری حائز اهمیت است. این موضوع را اینگونه می توان توضیح داد که هیدراسون سریع اولیه سبب توزیع غیریکنواخت ژل سیمانی با یک ساختار فیزیکی ضعیف می شود که احتمالا متخلخل تر از ساختار ژل سیمانی توسعه یافته در دمای معمولی است. همچنین در دماهای اولیه بالا، فرصت کافی برای محصولات هیدراسیون وجود نخواهد داشت تا از سطح دانه های سیمان پراکنده شده و به طور یکنواخت در فضاهای خالی جای گیرند. نتیجه این وضعیت، تمرکز محصولات هیدراسیون در مجاورت دانه های سیمان در حال هیدراته شدن است که در آن هیدراسیون بعدی سیمان و در نتیجه کسب مقاومت بلندمدت به تاخیر می افتد. 
تاثیر دمای عمل آوری برمقاومت در شکل 3 شرح داده شده است که به طور واضح کسب مقاومت اولیه بالاتر و مقاومت 28 روزه کمتر را با گذشت زمان نشان می دهد. باید به این نکته توجه شود که دما برای آزمایش های گزارش شده در این شکل تا زمان آزمایش و همچنین طی آن ثابت نگه داشته شده است. به هر حال، زمانی که بتن طی بازه زمانی 2 ساعته پیش از آزمایش تا 20 درجه سلسیوس (68درجه فارنهایت) سرد شود، تنها دماهای بالای 65 درجه سلسیوس (150 درجه فارنهایت) تاثیر مخرب دارند (شکل 4). از این رو، چنین به نظر می رسد که دما در لحظه آزمایش نیز بر مقاومت بتن تاثیر می گذارد.
نتایج شکل های 3 و 4 برای خمیر خالص سیمان پرتلند معمولی (نوع I) می باشد که البته شبیه به تاثیر دما برمقاومت بتن هستند. شکل 5 نشان می دهد که دمای بالاتر، مقاومت بیشتری را طی روز اول ایجاد می کند، اما این شرایط برای سنین 3 تا 28 روزه به طور اساسی تغییر می کند. در هر سن معین یک دمای بهینه وجود دارد که یک مقاومت حداکثر را تولید می کند. این دمای بهینه با افزایش دوره عمل آوری کاهش می یابد. دمای بهینه برای ایجاد حداکثر مقاومت 28 روزه در سیمان پرتلند معمولی (نوع I) یا سیمان پرتلند اصلاح شده (نوع II)، حدود 13 درجه سلسیوس (55 درجه فارنهایت) است. دمای بهینه متناظر برای سیمان پرتلند زودگیر کمتر می باشد. لازم به یادآوری است که حتی الامکان هیدراسیون در بتن هایی که در 4 درجه سلسیوس (40 درجه فارنهایت) قالب گیری شده و در دمایی کمتر از نقطه انجماد آب نگهداری شده اند، نیز وجود دارد (شکل 5.10). علاوه بر این، زمانی که همین بتن در کمتر از 28 روز در 23 درجه سلسیوس (73 درجه فارنهایت) نگهداری می شود، مقاومت سه ماهه اش بیش از بتن مشابهی است که به طور پیوسته در دمای 23 درجه سلسیوس (73 درجه فارنهایت) نگهداری شده است، 

شکل 3 رابطه بین مقاومت فشاری و زمان عمل آوری خمیر سیمان

شکل 3 رابطه بین مقاومت فشاری و زمان عمل آوری خمیر سیمان خالص

شکل 4 رابطه بین مقاومت فشاری و زمان عمل آوری خمیر سیمان
شکل 4 رابطه بین مقاومت فشاری و زمان عمل آوری خمیر سیمان 

شکل 4 رابطه بین مقاومت فشاری و زمان عمل آوری خمیر سیمان خالص در دماهای مختلف عمل آوری. دمای نمونه ها با یک نرخ ثابت در بازه زمانی 2 ساعته پیش از آزمایش به 20 درجه سلسیوس (68 درجه فارنهایت) رسانده شده است. [نسبت آب به سیمان = 14/0، سیمان پرتلند معمولی (نوع I)].
آنچه تا اینجا بیان شد، مربوط به بتن های ساخته شده در آزمایشگاه بود. به نظر می رسد که رفتار بتن ساخته شده در یک کارگاه مقیم در اقلیم گرمسیری نمی تواند مشابه با موارد فوق باشد. در این خصوص چند عامل موثر دیگر نیز از جمله رطوبت محیطی، تابش مستقیم خورشید، سرعت باد و روش عمل آوری وجود دارند. همچنین باید به یاد داشت که کیفیت بتن به دمای آن بستگی دارد و مستقل از دمای محیط اطراف آن می باشد، به طوری که اندازه عضو نیز یک عامل تاثیرگذار بر حرارت هیدراسیون سیمان می باشد. علاوه بر این، عمل آوری به روش غرقاب سازی در هنگام وزش باد منجر به افت گرما در اثر تبخیر می شود، به نحوی که دمای بتن کاهش می یابد ودر نتیجه مقاومت بتن بیشتر از زمانی خواهد بود که از ترکیبات آب بندی استفاده شده است. همچنین تبخیر بلافاصله پس از قالب گیری در کسب مقاومت مخلوط های با نسبت آب به سیمان بالا مفید است، زیرا آب در حالی از بتن خارج می شود که منافذ مویینه در حال بسته شدن هستند و در نتیجه نسبت آب به سیمان موثر و تخلخل بتن کاهش می یابد. به هر حال، در صورتی که تبخیر منجر به خشک شدن سطح بتن شود، ممکن است، جمع شدگی پلاستیک و ترک خوردگی را به بار آورد. به هر حال، به بیان کلی می توان انتظار داشت که بتن ساخته شده و قالب گیری شده در فصل تابستان دارای مقاومت کمتری نسبت به مخلوط مشابه قالب گیری شده در زمستان باشد.

شکل 5 تاثیر دما برمقاومت بتن قالب گیری و عمل آوری شده

شکل 5 تاثیر دما برمقاومت بتن قالب گیری و عمل آوری شده

*بتن در دمای 4 درجه سلسیوس (39 درجه فارنهایت) قالب گیری و از سن یک روزه در دمای 4- درجه سلسیوس (25 درجه فارنهایت) عمل آوری شده است.

4- نقش بلوغ بتن

در بخش قبل، اثر سودمند دما را برکسب مقاومت بتن ملاحظه کردیم، همچنین به لزوم یک دوره عمل آوری ابتدایی در دمای عادی نیز اشاره شد. شکل 6 برخی از این داده های متداول را نشان می دهد. تاثیر دما، تجمعی می باشد و می تواند به صورت حاصل ضرب دما در مدت زمانی که این دما وجود داشته است، بیان کرد. این امر تحت عنوان بلوغ شناخته می شود.

شکل 6 تاثیر دمای عمل آوری برمقاومت بتن عمل آوری شده

شکل 6 تاثیر دمای عمل آوری برمقاومت بتن عمل آوری شده در 10 درجه سلسیوس (50 درجه فارنهایت) 

شکل 7 مقاومت فشاری به عنوان تابعی از بلوغ برای داده های شکل 6.10

شکل 7 مقاومت فشاری به عنوان تابعی از بلوغ برای داده های شکل 6.10

از این رو، واحدهای بلوغ عبارت از درجه سلسیوس روز (درجه فارنهایت روز) یا درجه سلسیوس ساعت (یا درجه فارنهایت ساعت) هستند. شکل 7، همان داده های شکل 6 را نشان می دهند. با این تفاوت که مقاومت به صورت تابعی از بلوغ بیان شده است. در صورتی که داده های بلوغ بر روی مقیاس لگاریتمی رسم شوند، رابطه دوره عمل آوری ابتدایی تقریباً به صورت خطی خواهد بود (شکل 8). قانون "بلوغ" را می توان به طور خاص در تخمین مقاومت بتن به کار برد. بر هر حال، رابطه بین مقاومت و بلوغ به مقدار واقعی سیمان مصرفی، نسبت آب به سیمان و نوع افت آبی که طی عمل آوری اتفاق می افتد، بستگی دارد. علاوه بر این، تاثیر مضر دماهای اولیه بالا، قانون بلوغ را ناکار آمد می سازد. به این دلیل، راهکار بلوغ کاربرد گسترده ای ندارد و تنها در سیستم های بتن ریزی دقیق و برنامه ریزی شده مفید می باشد.

شکل 8 مقاومت فشاری به عنوان تابع لگاریتمی

شکل 8 مقاومت فشاری به عنوان تابع لگاریتمی از بلوغ برای داده های شکل 6.10.

5- عمل آوری با بخار

از آنجا که افزایش در دمای عمل آوری بتن نرخ کسب مقاومت را افزایش می دهد، می توان کسب مقاومت بتن را به وسیله عمل آوری با بخار تسریع کرد. در ظرایطی که بتن در بخار تحت فشار جو یعنی زمانی که دمای بخار کمتر از 100 درجه سلسیوس (212 درجه فارنهایت) است، قرار می گیرد، رطوبت به حدی است که می توان این روش را حالت خاصی از عمل آوری مرطوب دانست که تحت عنوان عمل آوری با بخار آب شناخته می شود. عمل آوری با بخار پر فشار که به عنوان اتوکلاو معروف است، و توضیح آن خارج از هدف این کتاب می باشد. 
هدف اصلی از عمل آوری با بخار حصول مقاومت اولیه کافی است، به طوری که بتوان محصولات بتنی را بلافاصله پس از قالب گیری جابه جا کرد و یا اینکه قالب ها را سریع تر باز کرد و یا اینکه تجهیزات پیش تنیدگی را زودتر از حالت عمل آوری مرطوب معمولی برچید. همچنین در این روش به فضای کمتری برای نگهداری بتن نیاز است که همگی این موارد یک مزیت اقتصادی به شمار می روند.
این روش عمدتاً باتوجه به ماهیت عملیات مقتضی در عمل آوری با بخار، در محصولات پیش ساخته کاربرد دارد. معمولاً، عمل آوری با بخار در تونل ها یا محفظه های ویژه انجام می شود که اعضای بتنی به وسیله تسمه نقاله به درون آن حمل می شوند. یک روش دیگر، استفاده از جعبه های قابل حمل و پوشش های پلاستیکی است که می توانند بر روی اعضای پیش ساخته قرار گیرند و بخار به وسیله اتصالات انعطاف پذیر به درون آنها راه یابد.
البته به دلیل تاثیر نامطلوب دما طی مراحل اولیه سخت شدن برمقاومت های بعدی (شکل 9) نباید افزایش سریع دما مجاز شمرده شود. این تاثیر نامطلوب در نسبت آب به سیمان بالاتر مخلوط مشهود تر است و همچنین در سیمان زودگیر (نوع III) مشخصتر از سیمان پرتلند معمولی (نوع I) می باشد. تاخیر در انجام عمل آوری با بخار با توجه به مقاومت بعدی بتن یک مزیت محسوب می شود. به طوری که هر چه دما بیشتر باشد، به تاخیر بیشتری نیاز است. در این حالت رابطه مقاومت – بلوغ برقرار است. به هر حال، در برخی از موارد ممکن است که مقاومت بعدی از اهمیت کمتری نسبت به ملزومات اولیه برخوردار باشد.

شکل 9 مقاومت بتن عمل آوری شده در دماهای مختلف

شکل 9 مقاومت بتن عمل آوری شده در دماهای مختلف

(نسبت آب به سیمان = 50/0، عمل آوری با بخار بلافاصله پس از قالب گیری اعمال شده است.)
اگرچه دوره های اجرایی عمل آوری براساس تعادل بین ملزومات مقاومت اولیه و مقاومت بلند مدت انتخاب می شود، اما مدت زمان عمل آوری بتن موجود (به طور مثال مدت دوره های کاری) نیز بر این امر تاثیر می گذارد. ملاحظات اقتصادی تعیین کننده این مطلب خواهند بود که آیا دوره عمل آوری باید متناسب با یک مخلوط بتنی معین باشد یا اینکه مخلوط باید متناسب با دوره معمول عمل آوری با بخار انتخاب شود. هر چند که جزئیات یک دوره عمل آوری بهینه به نوع محصول بتنی مورد نظر بستگی دارد، اما با این حال یک دوره متداول عمل آوری در شکل 10 نشان داده شده است. پس از یک دوره تاخیر (عمل آوری مرطوب معمولی) 3 تا 5 ساعته، دما با نرخ 22 تا 23 درجه سلسیوس (40 تا 60 درجه فارنهایت) برساعت تا حداکثر 66 تا 82 درجه سلسیوس (150 تا 180 درجه فارنهایت) بالا می رود. این دما حفظ شده و احتمالا این دوره با دوره خیس کردن" بتن ادامه می یابد که در آن بتن پیش از آنکه با یک نرخ متوسط سرد شود، بدون اضافه شدن هیچ حرارتی در دما و رطوبت موجود باقی می ماند. کل مدت دوره عمل آوری (بدون دوره تاخیر) ترجیحاً نباید بیش از 18 ساعت باشد. بتن ساخته شده با مصالح سنگی می تواند بین 82 تا 88 درجه سلسیوس (180 تا 190 درجه فارنهایت) گرما ببیند، اما دوره عمل آوری این نوع بتن نیز تفاوت چندانی با دوره عمل آوری بتن ساخته شده با مصالح سنگی معمولی ندارد.
دماهای ذکر شده مربوط به بخار بوده و الزاماً نباید بتن نیز دارای همین دما باشد. دمای قطعات بتنی طی یک یا دو ساعت اول پس از قرارگیری در محفظه عمل آوری کمتر از دمای هوا بوده، اما بعداً دمای بتن در اثر حرارت هیدراسیون سیمان از دمای هوا بیشتر خواهد شد. در صورتی که جریان بخار به داخل محفظه بسیار زود قطع شود و یک دوره عمل آوری طولانی فراهم شود، می توان حداکثر بهره را از بخار نگهداری شده در محفظه برد. نرخ آهسته گرم شدن و سرد شدن از این مطلوب است که گرادیان های دمایی بالا در بتن سبب تنش های داخلی شده و احتمالاً منجر به ترک خوردگی در اثر تغییر ناگهانی دما می شود. این بدین معنی است که اگر دوره تاخیر کاهش یابد، آنگاه باید نرخ گرم شدن آسته تری اعمال شود و این امر نه تنها به دلیل تغییر ناگهانی دما، بلکه به خاطر حصول اطمینان از مقاومت کافی بلند مدت می باشد. هرگز نباید از عمل آوری با بخار برای سیمان پرآلومین استفاده کرد، زیرا شرایط گرم و مرطوب تاثیر مخربی بر مقاومت این نوع سیمان دارد.

شکل 10دوره متداول عمل آوری با بخار

شکل 10دوره متداول عمل آوری با بخار

شما می توانید برای کسب اطلاعات بیشتر از دیگر مقالات ما بازدید نمایید:

جهت اطلاع از آخرین اخبار، در خبرنامه کلینیک بتن عضو شوید. عضویت در خبرنامه